Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Altern Ther Health Med ; 30(1): 472-480, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37820679

RESUMO

Objective: Acupuncture with low-frequency electrical stimulation (Acu-LFES) can attenuate muscle atrophy. Previous studies have found that Acu-LFES reduces the let-7 family in serum exosomes. This study explored the effects of let-7c-5p in chronic kidney disease (CKD) muscle atrophy. Methods: A total of 24 mice were randomly divided into control group, Acu-LFES group, CKD group, and CKD/Acu-LFES group (n = 6/group). The 5/6 nephrectomy was performed to establish the CKD model in mice. After 20 weeks, the Acu-LFES group and CKD/Acu-LFES group were treated with electroacupuncture at the "Zu San Li" and "Yang Ling Quan" bilaterally points for 15 minutes once. Surface sensing of translation (SUnSET), Reverse Transcription-quantitative PCR(RT-qPCR), immunofluorescence staining, and Western blot were performed to examine each group's state of protein production and myogenic differentiation. we knocked down or exogenously expressed let-7c-5p in C2C12 myoblast, RT-qPCR, and Western blot were performed to examine protein synthesis and myogenic differentiation. Results: The protein expressions of MyoD and Myogenin (MyoG) were decreased in the CKD group (P = .029 and P = .026) concomitant with a decrease in the muscle fiber cross-sectional area. Acu-LFES prevented muscle atrophy in CKD mice. The protein expressions of MyoD and MyoG were increased in the CKD/Acu-LFES group (P = .006 and P = .001). In muscle of CKD mice, IGF1, IGF1R, IRS1, phosphorylated mTOR and P70S6K proteins were decreased compared with control muscle (P = .001, P = .007, P < .001, P < .001 and P < .001), whereas atrogin-1/MAFbx and MuRF1 were dramatically increased (P < .001). Acu-LFES reversed these phenomena, indicating IGF1/mTOR signaling pathway was induced to promote muscle protein synthesis and myogenic differentiation. Meanwhile, Acu-LFES caused a decrease of let-7c-5p in skeletal muscle of CKD mice (P = .034). Inhibiting let-7c-5p promoted C2C12 myogenic differentiation (P = .002 and P = .001) and increased IGF1, IGF1R, IRS1 levels while upregulating mTOR and P70S6K phosphorylation (P < .001, P = .002, P = .009, P < .001 and P = .007). It is interesting to observe that the abundance of atrogin-1/MAFbx and MuRF-1 was unaffected by let-7c-5p (P > .05). Conclusions: Acu-LFES-reduced expression of let-7c-5p can ameliorate CKD-induced skeletal muscle atrophy by upregulating the IGF1/mTOR signaling pathway, which enhances skeletal muscle protein synthesis and myogenic differentiation. Let-7c-5p may be a potential regulator for the treatment of muscle atrophy.


Assuntos
Eletroacupuntura , Insuficiência Renal Crônica , Camundongos , Animais , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/terapia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Insuficiência Renal Crônica/terapia , Serina-Treonina Quinases TOR/metabolismo
2.
Biochem Biophys Res Commun ; 520(2): 385-391, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31606201

RESUMO

Previous studies have shown that sarcopenic obesity is highly prevalent in patients with chronic kidney disease (CKD). Here, the association between CKD and sarcopenic obesity were investigated. The 5/6 nephrectomy was performed to establish CKD in mice. Fluorescence-activated cell sorting (FACS), quantitative real-time PCR, ELISA kits assay, immunohistochemistry, and cell proliferation assay were carried out to investigate the condition of muscle loss and fatty infiltration were in CKD mice and the origin of adipocytes. Muscle atrophy occurred and adipogenic gene expression, Perilipin and FABP4 were markedly increased in the hind limb muscle of CKD mice. Results indicated that fibro/adipogenic progenitors (FAPs) are the precursor of adipocytes in the muscle of CKD mice. Meanwhile, the content of extracellular matrix protein CCN1 was notably increased in serum of CKD patients with sarcopenic obesity which was also found in muscle and serum of CKD mice. CCN1 induced the differentiation of FAPs into adipocytes. These results suggest that CKD mice are susceptible to sarcopenic obesity. CCN1 may be a novel activator of the differentiation of FAPs in CKD muscle.


Assuntos
Adipócitos/patologia , Proteína Rica em Cisteína 61/sangue , Proteína Rica em Cisteína 61/metabolismo , Músculo Esquelético/patologia , Insuficiência Renal Crônica/patologia , Adipogenia , Idoso , Animais , Diferenciação Celular , Modelos Animais de Doenças , Feminino , Expressão Gênica , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Nefrectomia , Insuficiência Renal Crônica/metabolismo , Células-Tronco/citologia , Células-Tronco/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...